med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

359
active users

#textmining

1 post1 participant0 posts today
Peter Cock<p><a href="https://fediscience.org/tags/ISMBECCB2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ISMBECCB2025</span></a> keynote Q&amp;A: How will LLMs like ChatGPT affect the future of <a href="https://fediscience.org/tags/biocuration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biocuration</span></a> ? I think Bairoch is hoping for domain specific integration with safeguards - like how <a href="https://fediscience.org/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> was adopted - he stresses this is not a panacea and needs engineering work</p>
Sozialwelten<p><a href="https://ifwo.eu/tags/Hinweis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hinweis</span></a> auf <a href="https://ifwo.eu/tags/Nutzbarkeit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nutzbarkeit</span></a> von <a href="https://ifwo.eu/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://ifwo.eu/tags/Analytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analytics</span></a> / <a href="https://ifwo.eu/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://ifwo.eu/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://ifwo.eu/tags/Methode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Methode</span></a>​n <a href="https://ifwo.eu/tags/Scraping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Scraping</span></a>, <a href="https://ifwo.eu/tags/Pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pattern</span></a> <a href="https://ifwo.eu/tags/Recognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Recognition</span></a>, <a href="https://ifwo.eu/tags/Machine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Machine</span></a> <a href="https://ifwo.eu/tags/Learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Learning</span></a> oder <a href="https://ifwo.eu/tags/Text" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Text</span></a> <a href="https://ifwo.eu/tags/Mining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mining</span></a> für <a href="https://ifwo.eu/tags/soziologisch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>soziologisch</span></a>​e <a href="https://ifwo.eu/tags/Forschung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Forschung</span></a>. </p><p><a href="https://ifwo.eu/tags/Sutter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sutter</span></a> / <a href="https://ifwo.eu/tags/Maasen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maasen</span></a> - <a href="https://ifwo.eu/tags/Neuerfindung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuerfindung</span></a> <a href="https://ifwo.eu/tags/Soziologie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Soziologie</span></a> S.76 f. 2020 DOI: 10.5771/9783845295008-73</p><p><a href="https://ifwo.eu/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://ifwo.eu/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://ifwo.eu/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> <a href="https://ifwo.eu/tags/Soziologie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Soziologie</span></a> <a href="https://ifwo.eu/tags/BigData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigData</span></a> <a href="https://ifwo.eu/tags/Methodologie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Methodologie</span></a> <a href="https://ifwo.eu/tags/Methodik" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Methodik</span></a> <a href="https://ifwo.eu/tags/Sozialforschung" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sozialforschung</span></a> <a href="https://ifwo.eu/tags/Sozialwissenschaft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sozialwissenschaft</span></a></p>
Digital History Berlin<p>📯 Diese Woche im <a href="https://fedihum.org/tags/DigitalHistoryOFK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHistoryOFK</span></a>: Torsten Hiltmann und <span class="h-card" translate="no"><a href="https://fedihum.org/@DigHisNoah" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>DigHisNoah</span></a></span> präsentieren "RAG den Spiegel" – ein innovatives RAG-System zur Analyse des SPIEGEL-Archivs. Der Vortrag zeigt, wie <a href="https://fedihum.org/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> Geschichtswissenschaft verändern und hermeneutische mit computationellen Methoden verbinden.<br>📅 25. Juni, 16-18 Uhr, online (Zugang auf Anfrage)<br>ℹ️ Abstract: <a href="https://dhistory.hypotheses.org/10912" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">dhistory.hypotheses.org/10912</span><span class="invisible"></span></a> <a href="https://fedihum.org/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> <a href="https://fedihum.org/tags/4memory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>4memory</span></a> <a href="https://fedihum.org/tags/DigitalHistory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHistory</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/historikerinnen" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>historikerinnen</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/histodons" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>histodons</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/digitalhumanities" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>digitalhumanities</span></a></span></p>
Juan R. Loaiza<p>Folks working in the <a href="https://hcommons.social/tags/DigitalHumanities" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHumanities</span></a> or <a href="https://hcommons.social/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> and related research fields, a technical question: do you use a database management system (DBMS) to store your data? Or do you use good old JSON or CSV files on local drives? If the first, what do you use (Postgres, MySQL, Mongo)? If the second, how do you sync your files to enable collaboration on the same data? </p><p>I'm starting a new project, and from past experience I think it would be best to set up a managed DB from the beginning, instead of using JSON files. That way my team has access to the same data and we can query the specific data we need for some analysis.</p>
Harald Klinke<p>Open Access book edited by Silke Schwandt: Digital Methods in the Humanities.<br>Explore interdisciplinary challenges, case studies, and innovative perspectives on digital tools in textual research.<br>Includes: From Serial Sources to Modeled Data, OCR, text mining &amp; more.<br><a href="https://www.transcript-verlag.de/978-3-8376-5419-6/digital-methods-in-the-humanities" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">transcript-verlag.de/978-3-837</span><span class="invisible">6-5419-6/digital-methods-in-the-humanities</span></a><br><a href="https://det.social/tags/DigitalHumanities" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHumanities</span></a> <a href="https://det.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAccess</span></a> <a href="https://det.social/tags/DigitalMethods" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalMethods</span></a> <a href="https://det.social/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> <a href="https://det.social/tags/HumanitiesResearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HumanitiesResearch</span></a> <a href="https://det.social/tags/SilkeSchwandt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SilkeSchwandt</span></a> <a href="https://det.social/tags/transcriptVerlag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transcriptVerlag</span></a></p>
ResearchBuzz: Firehose<p>Code4Lib: Distant Listening: Using Python and Apps Scripts to Text Mine and Tag Oral History Collections. “Designed for oral history project managers, the workflow empowers student workers to generate, modify, and expand subject tags during transcription editing, thereby enhancing the overall accuracy and discoverability of the collection. The paper details the workflow, surveys challenges […]</p><p><a href="https://rbfirehose.com/2025/04/15/distant-listening-using-python-and-apps-scripts-to-text-mine-and-tag-oral-history-collections-code4lib/" class="" rel="nofollow noopener" target="_blank">https://rbfirehose.com/2025/04/15/distant-listening-using-python-and-apps-scripts-to-text-mine-and-tag-oral-history-collections-code4lib/</a></p>
Daniel Hoffmann🌻<p>Harvesting information from a huge body of biomedical literature to identify links between diseases, drug targets, and drug candidates. <a href="https://mathstodon.xyz/tags/Deeplearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deeplearning</span></a> <a href="https://mathstodon.xyz/tags/textmining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>textmining</span></a> <a href="https://academic.oup.com/bioinformatics/article/41/4/btaf113/8082101" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/bioinformatic</span><span class="invisible">s/article/41/4/btaf113/8082101</span></a></p>
DHI Paris<p>Vom <a href="https://wisskomm.social/tags/Archiv" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Archiv</span></a> zur <a href="https://wisskomm.social/tags/Datenbank" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Datenbank</span></a>. Was <a href="https://wisskomm.social/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> und <a href="https://wisskomm.social/tags/GraphModelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphModelling</span></a> Verfahren zu einer vergleichenden <a href="https://wisskomm.social/tags/Sozialgeschichte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sozialgeschichte</span></a> des Zwangs im <a href="https://wisskomm.social/tags/Sp%C3%A4tmittelalter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Spätmittelalter</span></a> beitragen können: Juliane Schiel (Univ. Wien) beim morgigen <a href="https://wisskomm.social/tags/Jeudi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jeudi</span></a>-Vortrag mit Kommentar von Simona Cerutti (EHESS)</p><p>10.04. | 18:00 | hybrid | DE-FR</p><p><a href="https://www.dhi-paris.fr/veranstaltungsdetails/seminare/SeminarTime/detail/online-und-vor-ort-les-jeudis-de-linstitut-historique-allemand4265.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">dhi-paris.fr/veranstaltungsdet</span><span class="invisible">ails/seminare/SeminarTime/detail/online-und-vor-ort-les-jeudis-de-linstitut-historique-allemand4265.html</span></a></p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/histodons" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>histodons</span></a></span> <a href="https://wisskomm.social/tags/WORCK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WORCK</span></a> <a href="https://wisskomm.social/tags/DH" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DH</span></a> <a href="https://wisskomm.social/tags/digitaleTextanalyse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digitaleTextanalyse</span></a> <a href="https://wisskomm.social/tags/DigitalHumanties" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHumanties</span></a> <a href="https://wisskomm.social/tags/DigitalHistory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHistory</span></a></p>
Deutsches Historisches Institut Paris<p>Vom <a class="hashtag" href="https://bsky.app/search?q=%23Archiv" rel="nofollow noopener" target="_blank">#Archiv</a> zur <a class="hashtag" href="https://bsky.app/search?q=%23Datenbank." rel="nofollow noopener" target="_blank">#Datenbank.</a> <a class="hashtag" href="https://bsky.app/search?q=%23TextMining" rel="nofollow noopener" target="_blank">#TextMining</a> &amp; <a class="hashtag" href="https://bsky.app/search?q=%23GraphModelling" rel="nofollow noopener" target="_blank">#GraphModelling</a> für eine <a class="hashtag" href="https://bsky.app/search?q=%23Sozialgeschichte" rel="nofollow noopener" target="_blank">#Sozialgeschichte</a> des Zwangs im <a class="hashtag" href="https://bsky.app/search?q=%23Sp%C3%A4tmittelalter" rel="nofollow noopener" target="_blank">#Spätmittelalter</a> : Juliane Schiel (<a class="mention" href="https://bsky.app/profile/univie.ac.at" rel="nofollow noopener" target="_blank">@univie.ac.at</a>) beim nächsten <a class="hashtag" href="https://bsky.app/search?q=%23Jeudi-Vortrag" rel="nofollow noopener" target="_blank">#Jeudi-Vortrag</a> Kommentar: Simona Cerutti (<a class="mention" href="https://bsky.app/profile/ehess.fr" rel="nofollow noopener" target="_blank">@ehess.fr</a>) 10.04. | 18:00 | hybrid | DE-FR <a href="https://www.dhi-paris.fr/veranstaltungsdetails/seminare/SeminarTime/detail/online-und-vor-ort-les-jeudis-de-linstitut-historique-allemand4265.html" rel="nofollow noopener" target="_blank">www.dhi-paris.fr/ver...</a> <a class="hashtag" href="https://bsky.app/search?q=%23historysky" rel="nofollow noopener" target="_blank">#historysky</a> <a class="hashtag" href="https://bsky.app/search?q=%23WORCK" rel="nofollow noopener" target="_blank">#WORCK</a> <a class="hashtag" href="https://bsky.app/search?q=%23DH" rel="nofollow noopener" target="_blank">#DH</a></p>
DHI Paris<p>Vom <a href="https://wisskomm.social/tags/Archiv" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Archiv</span></a> zur <a href="https://wisskomm.social/tags/Datenbank" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Datenbank</span></a>. Was <a href="https://wisskomm.social/tags/TextMining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextMining</span></a> und <a href="https://wisskomm.social/tags/GraphModelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphModelling</span></a> Verfahren zu einer vergleichenden <a href="https://wisskomm.social/tags/Sozialgeschichte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sozialgeschichte</span></a> des Zwangs im <a href="https://wisskomm.social/tags/Sp%C3%A4tmittelalter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Spätmittelalter</span></a> beitragen können: Juliane Schiel (Univ. Wien) beim nächsten <a href="https://wisskomm.social/tags/Jeudi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jeudi</span></a>-Vortrag mit Kommentar von Simona Cerutti (EHESS)</p><p>10.04. | 18:00 | hybrid | DE-FR</p><p><a href="https://www.dhi-paris.fr/veranstaltungsdetails/seminare/SeminarTime/detail/online-und-vor-ort-les-jeudis-de-linstitut-historique-allemand4265.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">dhi-paris.fr/veranstaltungsdet</span><span class="invisible">ails/seminare/SeminarTime/detail/online-und-vor-ort-les-jeudis-de-linstitut-historique-allemand4265.html</span></a></p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/histodons" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>histodons</span></a></span> <a href="https://wisskomm.social/tags/WORCK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WORCK</span></a> <a href="https://wisskomm.social/tags/DH" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DH</span></a> <a href="https://wisskomm.social/tags/digitaleTextanalyse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digitaleTextanalyse</span></a> <a href="https://wisskomm.social/tags/DigitalHumanties" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHumanties</span></a> <a href="https://wisskomm.social/tags/DigitalHistory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHistory</span></a></p>

Resulting from an @snsf_ch SPARK grant this took some time to mature, but the outcome is very imformative and builds a foundation for where to head next - how to liberate facts/information locked in the published literature #textmining #biodiversity preprints.arphahub.com/article

ARPHA PreprintsFrom literature to biodiversity data: mining arthropod organismal and ecological traits with machine learningThe fields of taxonomy and biodiversity research have witnessed an exponential growth in published literature. This vast corpus of articles holds information on the diverse biological traits of organisms and their ecologies. However, access to and extraction of relevant data from this extensive resource remain challenging. Advances in text and data mining (TDM) and Natural Language Processing (NLP) techniques offer new opportunities for liberating such information from the literature. Testing and using such approaches to annotate articles in machine actionable formats is therefore necessary to enable the exploitation of existing knowledge in new biology, ecology, and evolution research. Here we explore the potential of these methods to annotate and extract organismal and ecological trait data for the most diverse animal group on Earth, the arthropods. The article processing workflow uses manually curated trait dictionaries with trained NLP models to perform labelling of entities and relationships of thousands of articles. A subset of manually annotated documents facilitated the formal evaluation of the performance of the workflow in terms of entity recognition and normalisation, and relationship extraction, highlighting several important technical challenges. The results are made available to the scientific community through an interactive web tool and queryable resource, the ArTraDB Arthropod Trait Database. These methodological explorations provide a framework that could be extended beyond the arthropods, where TDM and NLP approaches applied to the taxonomy and biodiversity literature will greatly facilitate data synthesis studies and literature reviews, the identification of knowledge gaps and biases, as well as the data-informed investigation of ecological and evolutionary trends and patterns.

📰 From Aachen to Zwickau: Mapping Correspondence in the Wiener Zeitung
At #Dhd2025 Nina C. Rastinger & Claudia Resch explore semi-automated methods for identifying correspondence locations in historical press research.

📜 Key insights:
📌 Transkribus enables tailored transcription with Field Model Training
📌 21,793 headlines & 129,326 tokens analyzed
📌 Uneven network density: Strong news flow from London (enemy) & Paris (ally)

🌍 Automating Nature Detection in Historical Travelogues?

At #Dhd2025 Michela Vignoli & Doris Gruber (ONiT Project) explore how #LLM Llama 3.1 70B can analyze nature representations in multilingual travel reports

⚠️ Challenges remain:
❌ LLMs always produces results—even with flawed data
❌ LLM-corrected texts did not improve searchability in vector databases (3–14% drop)
🔎 Conclusion: LLMs aids discovery but manual review is essential for a reliable dataset.

[Atelier Data] Le lab INA organise un atelier @iscpif le 12 mars à 17h30 consacré à l’exploration (#statistique, #TAL…) de transcriptions de JT TF1 et FR2
Il reste encore quelques places : framaforms.org/atelier-donnees

Une certaine autonomie avec les outils d'analyse quantitative (Python ou R, CSV, etc.) est nécessaire afin de pouvoir profiter pleinement de l'atelier.

framaforms.orgAtelier données INA | Framaforms.org

Resulting from an Swiss National Science Foundation SNSF SPARK grant this took some time to mature, but the outcome is very imformative and builds a foundation for where to head next - how to liberate facts/information locked in the published literature #textmining #biodiversity biorxiv.org/content/10.1101/20

bioRxiv · From literature to biodiversity data: mining arthropod organismal and ecological traits with machine learningThe fields of taxonomy and biodiversity research have witnessed an exponential growth in published literature. This vast corpus of articles holds information on the diverse biological traits of organisms and their ecologies. However, access to and extraction of relevant data from this extensive resource remain challenging. Advances in text and data mining (TDM) and Natural Language Processing (NLP) techniques offer new opportunities for liberating such information from the literature. Testing and using such approaches to annotate articles in machine actionable formats is therefore necessary to enable the exploitation of existing knowledge in new biology, ecology, and evolution research. Here we explore the potential of these methods to annotate and extract organismal and ecological trait data for the most diverse animal group on Earth, the arthropods. The article processing workflow uses manually curated trait dictionaries with trained NLP models to perform labelling of entities and relationships of thousands of articles. A subset of manually annotated documents facilitated the formal evaluation of the performance of the workflow in terms of entity recognition and normalisation, and relationship extraction, highlighting several important technical challenges. The results are made available to the scientific community through an interactive web tool and queryable resource, the ArTraDB Arthropod Trait Database. These methodological explorations provide a framework that could be extended beyond the arthropods, where TDM and NLP approaches applied to the taxonomy and biodiversity literature will greatly facilitate data synthesis studies and literature reviews, the identification of knowledge gaps and biases, as well as the data-informed investigation of ecological and evolutionary trends and patterns. ### Competing Interest Statement The authors have declared no competing interest.