med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

343
active users

#scatacseq

0 posts0 participants0 posts today
Christian Mayer<p>We also saw a shift in TF activity.</p><p>Footprinting showed increased NFI binding, especially NFIB, in late-born cohorts. These neurons activate maturation modules faster — possibly guided by chromatin remodeling during neurogenesis. <br><a href="https://fediscience.org/tags/NewsMayerlab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NewsMayerlab</span></a> <a href="https://fediscience.org/tags/TFfootprints" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TFfootprints</span></a> <a href="https://fediscience.org/tags/TranscriptionFactors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TranscriptionFactors</span></a> <a href="https://fediscience.org/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a><br>(5/7)</p>
Christian Mayer<p>This shift was mirrored in chromatin accessibility.</p><p>scATAC-seq revealed stage-specific enhancer activation, with late-born cells opening distinct regulatory elements — especially in distal regions. A dynamic change in the regulatory landscape. </p><p><a href="https://fediscience.org/tags/NewsMayerlab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NewsMayerlab</span></a> <a href="https://fediscience.org/tags/Chromatin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chromatin</span></a> <a href="https://fediscience.org/tags/Epigenetics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Epigenetics</span></a> <a href="https://fediscience.org/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a></p><p>(4/7)</p>
Gabriele Pollara<p><span class="h-card" translate="no"><a href="https://qoto.org/@cyrilpedia" class="u-url mention">@<span>cyrilpedia</span></a></span> sadly this is an absolute classic when new technologies emerge, then it turns out they&#39;re not as good as each other, and then someone tries to benchmark &amp; rank them! <a href="https://med-mastodon.com/tags/scatacseq" class="mention hashtag" rel="tag">#<span>scatacseq</span></a></p>
Arjan Boltjes<p>"NB cells signal to the BM microenvironment, rewiring via macrophage migration inhibitory factor and <a href="https://mastodon.social/tags/midkine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>midkine</span></a> signaling specifically <a href="https://mastodon.social/tags/monocytes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monocytes</span></a> ..."</p><p><a href="https://mastodon.social/tags/Neuroblastoma" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroblastoma</span></a> paper by Fetahu et al., the latest publication from the Taschner-Mandl lab in Vienna.</p><p>Going through this right now - very alike our own work - and talking to a few team members on Wednesday while they visit our center.</p><p><a href="https://mastodon.social/tags/macrophages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>macrophages</span></a> <a href="https://mastodon.social/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://mastodon.social/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAccess</span></a> <a href="https://mastodon.social/tags/cancer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cancer</span></a> <a href="https://mastodon.social/tags/immunology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>immunology</span></a> </p><p>Data available on EGA, behind a DAC.</p>
Brendan Innes<p>Anyone know a good review paper / learning resource for building gene regulatory networks <a href="https://genomic.social/tags/GRN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GRN</span></a> from <a href="https://genomic.social/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://genomic.social/tags/ATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ATACseq</span></a> and/or <a href="https://genomic.social/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> data?<br>Thanks!</p>
Haojia Wu<p>A new multiomics study from Satija Rahul's lab identified a unique population of CD8+ T cells after COVID-19 vaccination. These cells are the SARS-CoV-2 antigen specific and capable of rapid clonal expansion. The relative frequency and differentiation of these cells can predict clinical outcomes for COVID-19 patients. <a href="https://mastodon.haojia-wu.com/tags/covid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>covid</span></a> <a href="https://mastodon.haojia-wu.com/tags/multiomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multiomics</span></a> <a href="https://mastodon.haojia-wu.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/CITEseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CITEseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/ASAPseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ASAPseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/TCR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TCR</span></a><br><a href="https://www.biorxiv.org/content/10.1101/2023.01.24.525203v1" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">23.01.24.525203v1</span></a></p>
Haojia Wu<p>scFates: a python package for pseudotime analysis from single cell data <a href="https://mastodon.haojia-wu.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://mastodon.haojia-wu.com/tags/bioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bioinformatics</span></a> <a href="https://mastodon.haojia-wu.com/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a><br><a href="https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac746/6832042" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/bioinformatic</span><span class="invisible">s/advance-article/doi/10.1093/bioinformatics/btac746/6832042</span></a></p>
Haojia Wu<p>SComatic: a new <a href="https://mastodon.jiaworkspace.com/tags/singlecell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>singlecell</span></a> tool to detect somatic mutation from <a href="https://mastodon.jiaworkspace.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> data. <a href="https://mastodon.jiaworkspace.com/tags/bioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bioinformatics</span></a> <a href="https://mastodon.jiaworkspace.com/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <span class="h-card"><a href="https://qoto.org/@biorxivpreprint" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>biorxivpreprint</span></a></span> <a href="https://www.biorxiv.org/content/10.1101/2022.11.22.517567v1" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">22.11.22.517567v1</span></a></p>
Haojia Wu<p>Single cell best practices from Theis lab, a free online book that guides you through every detail of the single cell analysis. <a href="https://mastodon.jiaworkspace.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a><br><a href="https://www.sc-best-practices.org/preamble.html" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sc-best-practices.org/preamble</span><span class="invisible">.html</span></a></p>
Haojia Wu<p>scFates: a python package for pseudotime analysis from single cell data <a href="https://mastodon.jiaworkspace.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/bioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bioinformatics</span></a> <a href="https://mastodon.jiaworkspace.com/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <br><a href="https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac746/6832042" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/bioinformatic</span><span class="invisible">s/advance-article/doi/10.1093/bioinformatics/btac746/6832042</span></a></p>
Haojia Wu<p>scFates: a python package for pseudotime analysis from single cell data <a href="https://mastodon.jiaworkspace.com/tags/scRNAseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scRNAseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/scATACseq" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scATACseq</span></a> <a href="https://mastodon.jiaworkspace.com/tags/bioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bioinformatics</span></a> <a href="https://mastodon.jiaworkspace.com/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <br><a href="https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac746/6832042" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">academic.oup.com/bioinformatic</span><span class="invisible">s/advance-article/doi/10.1093/bioinformatics/btac746/6832042</span></a></p>