med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

307
active users

#fluiddynamics

6 posts6 participants0 posts today
Nicole Sharp<p><strong>Floating Bridges</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/floatbridge2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/floatbridge1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/floatbridge3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>For most of history, floating bridges have been temporary structures, often used by militaries crossing water, but over the course of the twentieth century, engineers learned to build more permanent floating bridges. These structures require very particular conditions–calm waters, minimal ice, and so on–but they can be great options for crossing lakes where the traditional anchoring options for a bridge just don’t exist. In this Practical Engineering video, Grady discusses some of the challenges and innovations of these unusual bridges. (Video and image credit: Practical Engineering)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/buoyancy/" target="_blank">#buoyancy</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/infrastructure/" target="_blank">#infrastructure</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Oceans Could “Burp” Out Absorbed Heat</strong></p><p>Earth’s atmosphere and oceans form a complicated and interconnected system. Water, carbon, nutrients, and heat move back and forth between them. As humanity pumps more carbon and heat into the atmosphere, the oceans–and particularly the Southern Ocean–have been absorbing both. <a href="https://doi.org/10.1029/2025AV001700" rel="nofollow noopener" target="_blank">A new study</a> looks ahead at what the long-term consequences of that could be.</p><p>The team modeled a scenario where, after decades of carbon emissions, the world instead sees a net decrease in carbon–which could be achieved by combining green energy production with carbon uptake technologies. They found that, after centuries of carbon reduction and gradual cooling, the Southern Ocean could release some of its pent-up heat in a “burp” that would raise global temperatures by tenths of a degree for decades to a century. The burp would not raise carbon levels, though.</p><p>The research suggests that we should continue working to understand the complex balance between the atmosphere and oceans–and how our changes will affect that balance not only now but in the future. (Image credit: <a href="https://unsplash.com/photos/raging-water-8tyCOqTqdqg" rel="nofollow noopener" target="_blank">J. Owens</a>; research credit: <a href="https://doi.org/10.1029/2025AV001700" rel="nofollow noopener" target="_blank">I. Frenger et al.</a>; via <a href="https://eos.org/research-spotlights/the-southern-ocean-may-be-building-up-a-massive-burp?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cfd/" target="_blank">#CFD</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/computational-fluid-dynamics/" target="_blank">#computationalFluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/heat-transfer/" target="_blank">#heatTransfer</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ocean/" target="_blank">#ocean</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Competing Time Scales</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/rottime1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/rottime2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/rottime3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Fluid dynamics often comes down to a competition between the different forces acting in a flow. Inertia, surface tension, viscosity, gravity, rotation — flows can be affected by all of these and more. In this video, researchers describe the three dominant forces in a rotating fluid like a planet’s atmosphere: viscosity, the fluid’s resistance to flowing; inertia, the fluid’s resistance to accelerating; and rotation, the overall spin of a fluid. </p><p>As shown in the video, which of these three forces dominates will change depending on the speed at which the force acts. We quantify this concept using time scales; the force with the smallest time scale can act fastest and will, therefore, win the tug-of-war. (Video and image credit: UCLA SpinLab)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/diy-fluids/" target="_blank">#DIYFluids</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/inertia/" target="_blank">#inertia</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mathematics/" target="_blank">#mathematics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotating-flow/" target="_blank">#rotatingFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a></p>
Scott Rochester<p><a href="https://mastodon.social/tags/writersCoffeeClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>writersCoffeeClub</span></a> 10 Nov 'What have you recently learned which will have a big impact on your work'</p><p>Time complexity of algorithms is the most difficult aspect of <a href="https://mastodon.social/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputerScience</span></a>.</p><p>Fluid dynamics is the most difficult aspect of <a href="https://mastodon.social/tags/Engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Engineering</span></a>.</p><p>I can do the former, not the latter. Both need a good grasp of calculus.</p><p>I can learn enough to make my fiction authentic.</p><p>I hope his girlfriend can learn to cope with a man who likes explosives.</p><p><a href="https://mastodon.social/tags/scifi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scifi</span></a> <a href="https://mastodon.social/tags/SlenderWolf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SlenderWolf</span></a> <a href="https://mastodon.social/tags/Engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Engineering</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Frosted</strong></p><p>Frost forms hexagonal columns on a wooden rail in this microphotograph by Gregory B. Murray. Like in snowflakes, when water molecules freeze they position themselves to form six-sided crystals. From this perspective, it looks like a miniature version of the <a href="https://en.wikipedia.org/wiki/Giant%27s_Causeway" rel="nofollow noopener" target="_blank">Giant’s Causeway</a>. (Image credit: <a href="https://www.nikonsmallworld.com/galleries/2025-photomicrography-competition/frost-on-a-wooden-railing" rel="nofollow noopener" target="_blank">G. Murray</a>; via <a href="https://arstechnica.com/science/2025/10/meet-the-2025-nikon-photomicrography-winners/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/freezing/" target="_blank">#freezing</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/frost/" target="_blank">#frost</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Our Best Look Yet at a Solar Flare</strong></p><p>Scientists have unveiled the sharpest images ever captured of a solar flare. Taken by the Inouye Solar Telescope, the image includes coronal loop strands as small as 48 kilometers wide and 21 kilometers thick–the smallest ones ever imaged. The width of the overall image is about 4 Earth diameters. The captured flare belongs to the most powerful class of flares, the X class. Catching such a strong flare under the perfect observation conditions is a wonderful stroke of luck.</p><p>Although astronomers had theorized that coronal loops included this fine-scale structure, the Inouye Solar Telescope is the first instrument with the resolution to directly observe structures of this size. Confirming their existence is a big step forward for those working to understand the details of our Sun. (Video and image credit: <a href="https://nso.edu/press-release/the-nsf-inouye-solar-telescope-delivers-record-breaking-images-of-solar-flare-coronal-loops/" rel="nofollow noopener" target="_blank">NSF/NSO/AURA</a>; research credit: <a href="https://doi.org/10.3847/2041-8213/adf95e" rel="nofollow noopener" target="_blank">C. Tamburri et al.</a>; via <a href="https://gizmodo.com/our-best-look-yet-a-solar-flare-reveals-the-suns-wilder-side-2000650618?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a href="https://www.youtube.com/watch?v=WnoAq4rpLg4" rel="nofollow noopener" target="_blank">https://www.youtube.com/watch?v=WnoAq4rpLg4</a></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sun/" target="_blank">#sun</a></p>
Nicole Sharp<p><strong>Buccaneer Archipelago</strong></p><p>Off western Australian, hundreds of low-lying islands and coral reefs jut into the ocean as part of the Buccaneer Archipelago. Tides here have a range of nearly 12 meters, so water rips through the narrow channels as the tide ebbs and flows. These fast flows lift sediment that dyes the water a bright turquoise. (Image credit: M. Garrison; via <a href="https://earthobservatory.nasa.gov/images/154595/buccaneer-archipelago?__readwiseLocation=" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ocean-tides/" target="_blank">#oceanTides</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tides/" target="_blank">#tides</a></p>
Nicole Sharp<p><strong>Salt and Sea Ice Aging</strong></p><p>Sea ice’s high reflectivity allows it to bounce solar rays away rather than absorb them, but melting ice exposes open waters, which are better at absorbing heat and thus lead to even more melting. To understand how changing sea ice affects climate, researchers need to tease out the mechanisms that affect sea ice over its lifetime. A <a href="https://doi.org/10.1103/mct1-6hbw" rel="nofollow noopener" target="_blank">new study</a> does just that, showing that sea ice loses salt as it ages, in a process that makes it less porous.</p><p>Researchers built a tank that mimicked sea ice by holding one wall at a temperature below freezing and the opposite wall at a constant, above-freezing temperature. Over the first three days, ice formed rapidly on the cold wall. But it did not simply sit there, once formed. Instead, the researchers noticed the ice changing shape while maintaining the same average thickness. The ice got more transparent over time, too, indicating that it was losing its pores. </p><p>Looking closer, the team realized that the aging ice was slowly losing its salt. As the water froze, it pushed salt into liquid-filled pores in the ice. One wall of the pore was always colder than the others, causing ice to continue freezing there, while the opposite wall melted. Over time, this meant that every pore slowly migrated toward the warm side of the ice. Once the pore reached the surface, the briny liquid inside was released into the water and the ice left behind had one fewer pores. Repeated over and over, the ice eventually lost all its pores. (Image credit: <a href="https://unsplash.com/photos/white-and-black-floral-mattress-CwLemdvY_28" rel="nofollow noopener" target="_blank">T. Haaja</a>; research credit and illustration: <a href="https://doi.org/10.1103/mct1-6hbw" rel="nofollow noopener" target="_blank">Y. Du et al.</a>; via <a href="https://physics.aps.org/articles/v18/156?__readwiseLocation=" rel="nofollow noopener" target="_blank">APS</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/freezing/" target="_blank">#freezing</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sea-ice/" target="_blank">#seaIce</a></p>
LeidenForce<p>We are recruiting a PhD for LeidenForce (Horizon Europe) — ESPCI Paris - PSL &amp; <span class="h-card" translate="no"><a href="https://mastodon.online/@UniversitedeLiege" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>UniversitedeLiege</span></a></span> </p><p>France + Belgium • Experimental physics • Fluid &amp; heat transfer<br>One of the final opportunities in the MSCA Doctoral Network.<br>We need You to share this call within your network.</p><p>🗓️ Application deadline<br>November 15, 2025</p><p>👉 Apply now | Please share<br>• Application form: <a href="https://www.leidenforce.eu/upload/docs/application/pdf/2025-11/phd_position_dc9__leidenforce_espci_paris__university_of_liege.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">leidenforce.eu/upload/docs/app</span><span class="invisible">lication/pdf/2025-11/phd_position_dc9__leidenforce_espci_paris__university_of_liege.pdf</span></a><br>• More info: <a href="https://www.leidenforce.eu" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">leidenforce.eu</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluiddynamics</span></a> <a href="https://mastodon.social/tags/PhDposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhDposition</span></a> <a href="https://mastodon.social/tags/MSCA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MSCA</span></a> <a href="https://mastodon.social/tags/HorizonEurope" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HorizonEurope</span></a> <a href="https://mastodon.social/tags/leidenfrosteffect" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>leidenfrosteffect</span></a></p>
Scott Rochester<p><a href="https://mastodon.social/tags/wordweavers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>wordweavers</span></a> 2 Nov 'something unusual'</p><p>HayWire learnt fluid dynamics just for fun!<br> <br>see Alt Text for more<br> <br><a href="https://mastodon.social/tags/scifi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scifi</span></a> <a href="https://mastodon.social/tags/SlenderWolf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SlenderWolf</span></a> <a href="https://mastodon.social/tags/JustForFun" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JustForFun</span></a> <a href="https://mastodon.social/tags/education" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>education</span></a> <a href="https://mastodon.social/tags/UKeduChat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UKeduChat</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/IndieAuthor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IndieAuthor</span></a> <a href="https://mastodon.social/tags/engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineering</span></a> <a href="https://mastodon.social/tags/Writ" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Writ</span></a><br>ingCommunity</p>
Nicole Sharp<p><strong>“Orion, the Horsehead and the Flame in H-alpha”</strong></p><p>Photographer Daniele Borsari captured this gorgeous composite image of nebulas in black and white, emphasizing the motion underlying the gas and dust. In the upper right, the Orion Nebula shines, bright with new stars. In the lower left, you can pick out the distinctive shape of the Horsehead Nebula and, further to the left, the Flame Nebula. We often see nebulas in bright colors, but I love the way black and white highlights the turbulence surrounding them. (Image credit: <a href="https://www.rmg.co.uk/whats-on/astronomy-photographer-year/galleries/young-competition-2025" rel="nofollow noopener" target="_blank">D. Borsari/ZWOAPOTY</a>; via <a href="https://www.thisiscolossal.com/2025/09/zwo-astronomy-photographer-of-the-year-17-winners/" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Kirigami Parachutes</strong></p><p>In kirigami, careful cuts to a flat surface can morph it into a more complicated shape. Researchers have been exploring how to use this in combination with flow; now they’ve created a <a href="https://www.nature.com/articles/s41586-025-09515-9" rel="nofollow noopener" target="_blank">new form of parachute</a>. Like a dandelion seed, this parachute is porous, with a complex but stable wake structure. This allows the parachute to drop directly over its target, unlike conventional parachutes, which require a glide angle to avoid canopy-collapsing turbulence. </p><p>When dropping conventional parachutes, users either have to tolerate random landings far off target or invest in complicated active control systems that guide the parachute. Kirigami parachutes, in contrast, offer a potentially simple and robust option for accurately delivering, for example, humanitarian aid. (Image and research credit: <a href="https://www.nature.com/articles/s41586-025-09515-9.epdf?sharing_token=_hKT-BpYqNUax0cyd5uKY9RgN0jAjWel9jnR3ZoTv0NiQIOFxUqS9fEfnvwLfD9ZlL4LrjzIeWHHCLLD2aWgOLn8rmqquYioJbb6ATj_0Tzff8QTJoFs0EZfiEEu31uAcHFJC02JN9KoNwmNZOPw94Gh_tIeaZeVPE59i2UvEYsVGA1lKHPBGbkuDZacttPJ9uhqI6GlKUsCb2FMZ8TtrNsH4VPxZUVWc6WAyRbWou4%3D&amp;tracking_referrer=physicsworld.com" rel="nofollow noopener" target="_blank">D. Lamoureux et al.</a>; via <a href="https://physicsworld.com/a/kirigami-inspired-parachute-falls-on-target/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Physics World</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/kirigami/" target="_blank">#kirigami</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/parachutes/" target="_blank">#parachutes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-flow/" target="_blank">#porousFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Geoengineering Trials Must Consider Unintended Costs</strong></p><p>As the implications of climate change grow more dire, interest in geoengineering–trying to technologically counter or mitigate climate change–grows. For example, some have suggested that barriers near tidewater glaciers could restrict the inflow of warmer water, potentially slowing the rate at which a glacier melts. But there are several problems with such plans, as <a href="https://doi.org/10.1029/2025AV001732" rel="nofollow noopener" target="_blank">researchers point out</a>. </p><p>Firstly, there’s the technical feasibility: could we even build such barriers? In many cases, geoengineering concepts are beyond our current technology levels. Burying rocks to increase a natural sill across a fjord might be feasible, but it’s unclear whether this would actually slow melting, in part because our knowledge of melt physics is woefully lacking. </p><p>But unintended consequences may be the biggest problem with these schemes. Researchers used existing observations and models of Greenland’s Ilulissat Icefjord, where a natural sill already restricts inflow and outflow from the fjord, to study downstream implications. Right now, the fjord’s discharge pulls nutrients from the deep Atlantic up to the surface, where a thriving fish population supports one of the country’s largest inshore fisheries. As the researchers point out, restricting the fjord’s discharge would almost certainly hurt the fishing industry, at little to no benefit in stopping sea level rise.</p><p>Because our environment and society are so complex and interconnected, it’s critical that scientists and policymakers carefully consider the potential impacts of any geoengineering project–even a relatively localized one. (Research and image credit: <a href="https://doi.org/10.1029/2025AV001732" rel="nofollow noopener" target="_blank">M. Hopwood et al.</a>; via <a href="https://eos.org/research-spotlights/underwater-glacier-guarding-walls-could-have-unintended-consequences?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geoengineering/" target="_blank">#geoengineering</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glacier/" target="_blank">#glacier</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Cornflower Roots Growing</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/root1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/root2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/root3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>As children, most of us plant a seed or two and watch it sprout, but we never get a view quite like this one. This microscopic timelapse shows the roots of a <a href="https://en.wikipedia.org/wiki/Centaurea_cyanus" rel="nofollow noopener" target="_blank">cornflower plant</a> extending into moist, porous soil, establishing xylem, and extending root hairs outward to collect water and nutrients to fuel further growth. At the end, there’s even a close-up view of flow inside the root hairs. What an incredible glimpse inside a world we so often take for granted! (Video and image credit: <a href="https://www.nikonsmallworld.com/galleries/2025-small-world-in-motion-competition/cornflower-root-hairs" rel="nofollow noopener" target="_blank">W. van Egmond</a>; via <a href="https://www.thisiscolossal.com/2025/09/2025-nikon-small-world-in-motion-video-competition/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plants/" target="_blank">#plants</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Waves Over Sand Ripples</strong></p><p>Look beneath the waves on a beach or in a bay, and you’ll find ripples in the sand. Passing waves shape these sandforms and can even build them to heights that require dredging to keep waterways passable to large ships. To better understand how the sand interacts with the flow, researchers build computer models that couple the flow of the water with the behavior of individual sand grains. <a href="https://doi.org/10.1029/2025JC022369" rel="nofollow noopener" target="_blank">One recent study</a> found that sand grains experienced the most shear stress as the flow first accelerates and then again when a vortex forms near the crest of the ripple. (Image credit: <a href="https://unsplash.com/photos/aerial-photography-of-body-of-water-Dz5bJq_nEng" rel="nofollow noopener" target="_blank">D. Hall</a>; research credit: <a href="https://doi.org/10.1029/2025JC022369" rel="nofollow noopener" target="_blank">S. DeVoe et al.</a>; via <a href="https://eos.org/editor-highlights/a-first-look-at-how-sand-behaves-inside-a-rippled-bed?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cfd/" target="_blank">#CFD</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/computational-fluid-dynamics/" target="_blank">#computationalFluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ocean-waves/" target="_blank">#oceanWaves</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sand-ripples/" target="_blank">#sandRipples</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sediment-transport/" target="_blank">#sedimentTransport</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sedimentation/" target="_blank">#sedimentation</a></p>
Nicole Sharp<p><strong>Sand Dikes Can Date Earthquakes</strong></p><p>When a strong earthquake causes liquefaction, sand can intrude upward, leaving behind a feature that resembles an upside-down icicle. Known as a sand dike, researchers suspected that these intrusions could help us date ancient earthquakes. <a href="https://doi.org/10.1016/j.epsl.2025.119578" rel="nofollow noopener" target="_blank">A new study</a> shows how and why this is possible. </p><p>Using <a href="https://en.wikipedia.org/wiki/Optically_stimulated_luminescence" rel="nofollow noopener" target="_blank">optically stimulated luminescence</a>, researchers had already dated quartz in sand dikes and found that it appeared to be younger than the surrounding rock formations. But that information alone was not enough to tie the sand dike’s age to the earthquake that caused it. </p><p>The final puzzle piece fell into place when researchers showed that, during a sand dike’s formation, friction between sand grains could raise the temperature higher than 350 degrees Celsius. That temperature is high enough to effectively “reset” the age that luminescence dates the quartz to. Since the quartz likely wouldn’t have had another reset since the earthquake that put it in the sand dike, this means scientists can date the sand dikes themselves to determine when an earthquake occurred. (Image credit: Northisle/Wikimedia Commons; research credit: <a href="https://doi.org/10.1016/j.epsl.2025.119578" rel="nofollow noopener" target="_blank">A. Tyagi et al.</a>; via <a href="https://eos.org/articles/spiky-sand-features-can-reveal-the-timing-of-ancient-earthquakes?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/earthquake/" target="_blank">#earthquake</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
doboprobodyne<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@ColinTheMathmo" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>ColinTheMathmo</span></a></span> <br>Ah, rabbit-hole explorer, eh? I confess I'm pretty deep in this warren myself. I believe it's for trim, is used in normal flight (but isn't itself the elevator, which might be what you were asking, that's a separate control surface), and has no flaps (basically they're on the wings). Happy to be corrected; I write in a relatively amateur capacity. You may enjoy this thread: <a href="https://homebuiltairplanes.com/threads/designing-a-removable-one-piece-horizontal-stabilizer-with-advanced-composites-self-study.37764" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">homebuiltairplanes.com/threads</span><span class="invisible">/designing-a-removable-one-piece-horizontal-stabilizer-with-advanced-composites-self-study.37764</span></a> Fair warning: it may lead to wanting to build little airplanes.</p><p>*edited to add: I think post #31 in that thread (first post of page 2) is particularly pertinent to your question. I believe the author spent much of their career in vibration engineering (I don't know the proper name for their subspecialty, but anyway, suffice to say they're a switched-on cookie).</p><p><a href="https://mathstodon.xyz/tags/aviation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aviation</span></a> <a href="https://mathstodon.xyz/tags/aerospace" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aerospace</span></a> <a href="https://mathstodon.xyz/tags/aircraftDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aircraftDesign</span></a> <a href="https://mathstodon.xyz/tags/aeroplanes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aeroplanes</span></a> <a href="https://mathstodon.xyz/tags/airplanes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>airplanes</span></a> <a href="https://mathstodon.xyz/tags/systemArchitecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>systemArchitecture</span></a> <a href="https://mathstodon.xyz/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidDynamics</span></a> <a href="https://mathstodon.xyz/tags/engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineering</span></a></p>
Nicole Sharp<p><strong>Flettner Rotors Spin Anew</strong></p><p>In the 1920s, the world saw a new sort of marine propulsion, ships with one or more tall, smokeless cylinders. These Flettner rotors, named for their inventor, would spin in the wind, generating lift to propel the boat, much as a sail would. (The difference is that the rotor uses the Magnus effect.) </p><p>The market crash that kicked off the Great Depression spelled an end to the rotorship, but the idea is getting revived as industries search for greener forms of ship propulsion. Although the Flettner rotor still uses fuel (to spin the rotor), it can complete a voyage on only a small fraction of the fuel needed for conventional propulsion. (Image credit: Getty Images; via <a href="https://www.popsci.com/technology/green-shipping-rotor-sails-history/?__readwiseLocation='" rel="nofollow noopener" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aerodynamics/" target="_blank">#aerodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flettner/" target="_blank">#Flettner</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lift-generation/" target="_blank">#liftGeneration</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnus-effect/" target="_blank">#magnusEffect</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propulsion/" target="_blank">#propulsion</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sailing/" target="_blank">#sailing</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Predicting Sea States</strong></p><p>Transferring cargo between ships and landing aircraft on carriers requires predicting how the waves will behave for the next few minutes. That’s a notoriously difficult task for several reasons: rough seas can hide a ship radar’s view and the inherent nonlinearity of ocean waves means that they can occasionally coalesce unexpectedly large (“rogue“) waves, seemingly from nowhere. </p><p>A <a href="https://doi.org/10.1103/jsd9-4kx1" rel="nofollow noopener" target="_blank">new study describes</a> a technique for improving sea state predictions. In their model, the team first use multiple radar returns to average out gaps in the current wave state data, then feed that interpolated data into a prediction algorithm that includes nonlinearities up to the third-order. The results, they found, gave far better predictions than current techniques, some of which had errors 3 times as high. (Image credit: <a href="https://unsplash.com/photos/rough-ocean-waves-under-a-bright-hazy-sun-KVpJ2tC-8tE" rel="nofollow noopener" target="_blank">R. Ding</a>; research credit: <a href="https://doi.org/10.1103/jsd9-4kx1" rel="nofollow noopener" target="_blank">J. Yao et al.</a>; via <a href="https://physics.aps.org/articles/v18/s114?__readwiseLocation=" rel="nofollow noopener" target="_blank">APS News</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nonlinear-dynamics/" target="_blank">#nonlinearDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ocean-waves/" target="_blank">#oceanWaves</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Zoom Into the Sun</strong></p><p>Fall into our nearest star in this <a href="https://www.esa.int/ESA_Multimedia/Images/2025/04/Solar_Orbiter_s_widest_high-res_view_of_the_Sun" rel="nofollow noopener" target="_blank">gorgeous high-resolution view of the Sun</a>. Taken by Solar Orbiter, a joint NASA-ESA mission, the image stretches from the fiery photosphere — full of filaments and prominences — to the wispy yet unbelievably hot corona. It’s well worth clicking through to zoom in and around the full size image. (Image credit: <a href="https://www.esa.int/ESA_Multimedia/Images/2025/04/Solar_Orbiter_s_widest_high-res_view_of_the_Sun" rel="nofollow noopener" target="_blank">ESA &amp; NASA/Solar Orbiter/EUI Team, E. Kraaikamp</a>; via <a href="https://gizmodo.com/this-is-the-highest-resolution-portrait-of-the-sun-weve-ever-seen-2000593814?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/coronal-mass-ejection/" target="_blank">#coronalMassEjection</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sun/" target="_blank">#sun</a></p>