med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

411
active users

#datastructure

0 posts0 participants0 posts today
Statistics Globe<p>Mean imputation is a straightforward method for handling missing values in numerical data, but it can significantly distort the relationships between variables.</p><p>For a detailed explanation of mean imputation, its drawbacks, and better alternatives, check out my full tutorial here: <a href="https://statisticsglobe.com/mean-imputation-for-missing-data/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/mean-imput</span><span class="invisible">ation-for-missing-data/</span></a></p><p>More details are available at this link: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/businessanalyst" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>businessanalyst</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a></p>
Statistics Globe<p>gganimate is a powerful extension for ggplot2 that transforms static visualizations into dynamic animations. By adding a time dimension, it allows you to illustrate trends, changes, and patterns in your data more effectively.</p><p>The attached animated visualization, which I created with gganimate, showcases a ranked bar chart of the top 3 countries for each year based on inflation since 1980.</p><p>More information: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a></p>
Statistics Globe<p>Visualizing gene structures in R? gggenes, an extension of ggplot2, simplifies the process of creating clear and informative gene diagrams, making genomic data easier to interpret and share.</p><p>Visualization: <a href="https://cran.r-project.org/web/packages/gggenes/vignettes/introduction-to-gggenes.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cran.r-project.org/web/package</span><span class="invisible">s/gggenes/vignettes/introduction-to-gggenes.html</span></a></p><p>Click this link for detailed information: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a></p>
Jan :rust: :ferris:<p>Red Green Syntax Trees - an Overview | by Will Speak (aka Plingdollar):</p><p><a href="https://willspeak.me/2021/11/24/red-green-syntax-trees-an-overview.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">willspeak.me/2021/11/24/red-gr</span><span class="invisible">een-syntax-trees-an-overview.html</span></a></p><p><a href="https://floss.social/tags/Parser" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Parser</span></a> <a href="https://floss.social/tags/Compiler" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Compiler</span></a> <a href="https://floss.social/tags/DataStructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructure</span></a></p>
Karsten Schmidt<p><a href="https://mastodon.thi.ng/tags/ReleaseMonday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ReleaseMonday</span></a> — One of the recent (already very useful!) new package additions to <a href="https://mastodon.thi.ng/tags/ThingUmbrella" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ThingUmbrella</span></a> is:</p><p><a href="https://thi.ng/leaky-bucket" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/leaky-bucket</span><span class="invisible"></span></a></p><p>Leaky buckets are commonly used in communication networks for rate limiting, traffic shaping and bandwidth control, but are equally useful in other domains requiring similar constraints.</p><p>A Leaky Bucket is a managed counter with an enforced maximum value (i.e. bucket capacity). The counter is incremented for each a new event to check if it can/should be processed. If the bucket capacity has already been reached, the bucket will report an overflow, which we can then handle accordingly (e.g. by dropping or queuing events). The bucket also has a configurable time interval at which the counter is decreasing (aka the "leaking" behavior) until it reaches zero again (i.e. until the bucket is empty). Altogether, this setup can be utilized to ensure both an average rate, whilst also supporting temporary bursting in a controlled fashion...</p><p>Related, I've also updated/simplified the rate limiter interceptor in <a href="https://thi.ng/server" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/server</span><span class="invisible"></span></a> to utilize this new package...</p><p><a href="https://mastodon.thi.ng/tags/ThingUmbrella" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ThingUmbrella</span></a> <a href="https://mastodon.thi.ng/tags/DataStructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructure</span></a> <a href="https://mastodon.thi.ng/tags/RateLimiting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RateLimiting</span></a> <a href="https://mastodon.thi.ng/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a> <a href="https://mastodon.thi.ng/tags/TypeScript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TypeScript</span></a> <a href="https://mastodon.thi.ng/tags/JavaScript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JavaScript</span></a></p>
Statistics Globe<p>I used to think that writing sophisticated R code meant using all the advanced features and chaining long functions together...</p><p>Fancy code can be fun, but clean code makes collaboration and debugging so much easier.</p><p>Stay informed on data science by joining my free newsletter. Check out this link for more details: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/datasciencetraining" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencetraining</span></a></p>
Statistics Globe<p>In missing data imputation, it is crucial to compare the distributions of imputed values against the observed data to better understand the structure of the imputed values.</p><p>The visualization below can be generated using the following R code:</p><p>library(mice)<br>my_imp &lt;- mice(boys)<br>densityplot(my_imp)</p><p>Take a look here for more details: <a href="https://statisticsglobe.com/online-workshop-missing-data-imputation-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-wor</span><span class="invisible">kshop-missing-data-imputation-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/statisticalanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticalanalysis</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/visualanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>visualanalytics</span></a> <a href="https://mastodon.social/tags/pythoncoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pythoncoding</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a></p>
Statistics Globe<p>Avoiding text overlap in plots is essential for clarity, and R offers a great solution with the ggplot2 and ggrepel packages. By automatically repositioning labels, ggrepel keeps your plot clean and easy to interpret.</p><p>Video: <a href="https://www.youtube.com/watch?v=5lu4h_CPhi0" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=5lu4h_CPhi0</span><span class="invisible"></span></a><br>Website: <a href="https://statisticsglobe.com/avoid-overlap-text-labels-ggplot2-plot-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/avoid-over</span><span class="invisible">lap-text-labels-ggplot2-plot-r</span></a></p><p>Take a look here for more details: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/pythonprogramminglanguage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pythonprogramminglanguage</span></a> <a href="https://mastodon.social/tags/statisticalanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticalanalysis</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a> <a href="https://mastodon.social/tags/rstudio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstudio</span></a></p>
naught101<p>Is there a data structure that can sensibly handle multiple hierarchical classification systems?</p><p>e.g. an Orange, in terms of phylogeny is<br>Plantae-&gt;Eudicot-&gt;...-&gt;Citrus-&gt;sinensis</p><p>and in terms of usefulness, is <br>Thing-&gt;Food-&gt;fruit-&gt;orange<br>(and it could have multiple parents in this taxonomy, e.g. cleaning product)</p><p>Bonus points for cool visualisations of this kind information.</p><p><a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/dataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataScience</span></a> <a href="https://mastodon.social/tags/dataStructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataStructure</span></a> <a href="https://mastodon.social/tags/information" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>information</span></a> <a href="https://mastodon.social/tags/hierarchy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hierarchy</span></a> <a href="https://mastodon.social/tags/taxonomy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>taxonomy</span></a> <a href="https://mastodon.social/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mastodon.social/tags/visualisation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>visualisation</span></a> <a href="https://mastodon.social/tags/dataViz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataViz</span></a></p>
Statistics Globe<p>In statistics, Frequentist and Bayesian approaches are two major methods of inference. While they aim to solve similar problems, they differ in their interpretation of probability and handling of uncertainty.</p><p>Frequentists interpret probability as the long-run frequency of events. Parameters (like the mean) are fixed but unknown, and inference relies on analyzing repeated samples.</p><p>Learn more: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://mastodon.social/tags/analysisskill" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>analysisskill</span></a></p>
Statistics Globe<p>Bring your visualizations to life with see, a dynamic R package from the easystats ecosystem that extends ggplot2 to create modern and intuitive graphics. Whether you're visualizing statistical models or exploring data, see simplifies the process and enhances the presentation of your insights.</p><p>Visualizations: <a href="https://github.com/easystats/see" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/easystats/see</span><span class="invisible"></span></a></p><p>Take a look here for more details: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/rprogramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rprogramming</span></a> <a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/coding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coding</span></a></p>
Statistics Globe<p>Dimensionality reduction simplifies high-dimensional data while retaining its essential features. It’s a powerful tool for improving data analysis, visualization, and machine learning performance.</p><p>Image credit to Wikipedia: <a href="https://en.wikipedia.org/wiki/Dimensionality_reduction#/media/File:PCA_Projection_Illustration.gif" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Dimensio</span><span class="invisible">nality_reduction#/media/File:PCA_Projection_Illustration.gif</span></a></p><p>I've developed an in-depth course on PCA theory and its application in R programming. Check out this link for more details: <a href="https://statisticsglobe.com/online-course-pca-theory-application-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-pca-theory-application-r</span></a></p><p><a href="https://mastodon.social/tags/rstudio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstudio</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a> <a href="https://mastodon.social/tags/statistical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistical</span></a> <a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a></p>
Statistics Globe<p>Understanding the difference between Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) can be challenging!</p><p>Visualization source: <a href="https://en.wikipedia.org/wiki/Deep_learning#/media/File:AI-ML-DL.svg" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Deep_lea</span><span class="invisible">rning#/media/File:AI-ML-DL.svg</span></a></p><p><a href="https://mastodon.social/tags/database" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>database</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/dataanalytic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytic</span></a></p>
Statistics Globe<p>Creating publication-ready plots in R is easier than ever with ggpubr. This extension for ggplot2 simplifies the process of generating clean and professional graphics, especially for exploratory data analysis and reporting.</p><p>Course link: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://mastodon.social/tags/dataanalytic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalytic</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>package</span></a> <a href="https://mastodon.social/tags/datasciencetraining" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencetraining</span></a> <a href="https://mastodon.social/tags/visualanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>visualanalytics</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a></p>
Statistics Globe<p>The Student's t-test is a crucial statistical method used to determine if there are significant differences between the means of two groups. It is widely applied in various fields to analyze small data sets, providing valuable insights when used correctly.</p><p>This visualization is based on the images of this Wikipedia article: <a href="https://en.wikipedia.org/wiki/Student%27s_t-test" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Student%</span><span class="invisible">27s_t-test</span></a></p><p>Further details: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/rprogramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rprogramming</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a></p>
Statistics Globe<p>In Bayesian inference, a credible interval is a range of values within which a parameter lies with a certain probability, given the observed data and prior beliefs. The image of this post (based on this Wikipedia image: <a href="https://en.wikipedia.org/wiki/Credible_interval#/media/File:Highest_posterior_density_interval.svg" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Credible</span><span class="invisible">_interval#/media/File:Highest_posterior_density_interval.svg</span></a>) represents a 90% highest-density credible interval of a posterior probability distribution.</p><p>More details: <a href="http://eepurl.com/gH6myT" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/gH6myT</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/statistical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistical</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/rprogramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rprogramming</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a></p>
Statistics Globe<p>Logged GDP per capita, social support, freedom to make life choices, and perceptions of corruption are pivotal determinants of happiness.</p><p>This graph illustrates these metrics for the top 10 happiest countries, arranged from left to right, based on the World Happiness Report 2023.</p><p>See this link for additional information: <a href="https://statisticsglobe.com/webinar-data-analysis-visualization-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/webinar-da</span><span class="invisible">ta-analysis-visualization-r</span></a></p><p><a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/analysisskills" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>analysisskills</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/visualanalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>visualanalytics</span></a></p>
Statistics Globe<p>The Kruskal-Wallis test is a non-parametric method used to determine if there are statistically significant differences in the distributions of three or more independent groups based on ranks. Unlike ANOVA, it does not assume a normal distribution, making it versatile for analyzing non-normally distributed data sets. </p><p>Visualization: <a href="https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_test#/media/File:Difference_between_ANOVA_and_KW_test.png" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Kruskal%</span><span class="invisible">E2%80%93Wallis_test#/media/File:Difference_between_ANOVA_and_KW_test.png</span></a></p><p>Consider joining my online course: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/StatisticalAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>StatisticalAnalysis</span></a> <a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/Package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Package</span></a> <a href="https://mastodon.social/tags/pythonforbeginners" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pythonforbeginners</span></a> <a href="https://mastodon.social/tags/RStats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStats</span></a></p>
Statistics Globe<p>Understanding probability distributions is key to making informed decisions in statistics and data science. Probability distributions describe how the values of a variable are expected to behave, making them crucial for interpreting data and predicting outcomes.</p><p>Learn more by visiting this link: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/Package" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Package</span></a> <a href="https://mastodon.social/tags/DataViz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataViz</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a> <a href="https://mastodon.social/tags/RStats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStats</span></a></p>
Statistics Globe<p>Understanding the Law of Large Numbers (LLN) is crucial for anyone working with statistics and probability. The LLN states that as the number of trials in an experiment increases, the average of the results becomes closer to the expected value.</p><p>Visualization: <a href="https://en.wikipedia.org/wiki/Law_of_large_numbers#/media/File:DiffusionMicroMacro.gif" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Law_of_l</span><span class="invisible">arge_numbers#/media/File:DiffusionMicroMacro.gif</span></a></p><p>Click this link for detailed information: <a href="https://statisticsglobe.com/law-of-large-numbers" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/law-of-lar</span><span class="invisible">ge-numbers</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/RStudio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStudio</span></a> <a href="https://mastodon.social/tags/RStats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStats</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a> <a href="https://mastodon.social/tags/statisticsclass" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticsclass</span></a> <a href="https://mastodon.social/tags/DataAnalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataAnalytics</span></a> <a href="https://mastodon.social/tags/DataViz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataViz</span></a></p>