med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

355
active users

#algorithmicart

5 posts2 participants0 posts today
Steven Dollins<p>80 vertices in 2-fold dihedral symmetry has triangle strips of 4 different lengths.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>We can also get 80-vertex tetrahedral symmetry with a more "traditional" arrangement of 12 pentagons and the rest hexagons.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>Here is an 80-vertex sphere in tetrahedral symmetry with 24 valence-7 vertices.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Jeff Palmer<p>Completed this painting recently. Not sure if I've mentioned this, but I've transitioned to a mode where I create computer algorithms that generate images, which I then paint by hand. I find the process of mapping rigid computer-based processes to the messy real world to be an extremely satisfying approach.</p><p><a href="https://genart.social/tags/Art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Art</span></a> <a href="https://genart.social/tags/Artist" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Artist</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/Painting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Painting</span></a> <a href="https://genart.social/tags/AcrylicPainting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AcrylicPainting</span></a></p>
Dani Laura (they/she/he)<p>Nature promotes diversity, don't be anti-nature.<br>Good <a href="https://mathstodon.xyz/tags/Stonewall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Stonewall</span></a> uprising anniversary! (28th of June)<br>This piece was created as follows: each element was generated based on a prime number from 2 upwards, specifically the first six decimal places of its square root. The first four decimals defined the shape, the next two the colours.<br>Shapes are based on the properties of the plastic ratio (plastic as in plastic arts, not the infamous material), a lesser-known ratio with many interesting properties.<br>As can be seen in the second picture, there are several ways to connect the ends of a quarter of a unit circle as a sequence of quarter sectors with radii the inverse powers of this ratio, up to the fifth. There are exactly ten possibilities disregarding sector rotations, so each one can represent one decimal place (third picture), and four sides make up the whole shape.<br>For the colours, each decimal represents one of ten colours; inside they are renderend lighter and outside darker.<br>Lastly, the grey background was generated using the Halton sequences of 2, 3 and 5.</p><p><a href="https://mathstodon.xyz/tags/pride" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pride</span></a> <a href="https://mathstodon.xyz/tags/LGBTQ" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LGBTQ</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a></p>
Steven Dollins<p>Tetrahedral symmetry requires that a general point be in a set of 12 -- on each of the 4 faces in each of 3 orientations. You can also add 4 points at the vertices, 4 at each face center, or 6 at each edge center. Combined, any even number of points &gt;= 4 can be arranged with tetrahedral symmetry, albeit not always evenly.</p><p>Here is 50 points in tetrahedral symmetry which requires that some of them have valence 7.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>50 vertices arranged in D6 symmetry is interesting in that it forms two different but close in length triangle strips -- one following the longitudes and the other the latitudes.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>And 22 vertices can also arrange with 2-fold cylindrical symmetry that runs all the pentagons together into one long strip. It produces one long triangle strip and three short ones.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>22 vertices can also arrange with 2-fold dihedral symmetry with two strips of six pentagons each separated by a single loop of 10 hexagons. The triangulation has two long triangle strips and two short ones.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>40 vertices in tetrahedral symmetry gives a mix of the two with 4 strips that wrap twice and three that only wrap once.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>22 vertices can also have tetrahedral symmetry, but now only have four strips that each wrap the sphere twice.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>16 vertices gives a triangulation with tetrahedral symmetry. It has 7 triangle strips.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>In contrast, the 12-vertex icosahedron has 6 triangle strips.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>If you walk triangle strips on this 67 vertex sphere triangulation with 5-fold dihedral symmetry, it makes one complete circuit.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>The Orb 47/24</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>shaders</span></a></p>
Dani Laura (they/she/he)<p>Koch revisited! Another non-regular fractal produced with the idea of the previous post <a href="https://mathstodon.xyz/@DaniLaura/114715501148741420" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@DaniLaura/1147</span><span class="invisible">15501148741420</span></a> (and no randomness), see first figure. Each triangle generated from a side also depends on the sizes of the current neighbour sides, not just from the side size. Two opposite triangles are generated from each side, the internal one being invisible (but its offspring do not inherit this trait). In the second figure a regular variation where triangles are put off-centre. Here the initial triangle is not drawn as well. <br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a></p>
Karsten Schmidt<p>Various thi.ng updates, bug fixes, additions and new version of <a href="https://github.com/thi-ng/zig-thing/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/thi-ng/zig-thing/</span><span class="invisible"></span></a> — now fully compatible with current Zig v0.14.1</p><p>On a more diary/devlog note: I also updated several of my Zig based work-in-progress art pieces to the latest version (some of them not touched in 2+ years) and it's so good to see how the <a href="https://thi.ng/wasm-api" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/wasm-api</span><span class="invisible"></span></a> toolchain has been holding up with various breaking Zig changes and also how this setup simplifies creating hybrid Zig/TypeScript projects (e.g. for using DOM/WebGL from Zig). Related, I also want to mention once more the <a href="https://mastodon.thi.ng/tags/GenArtAPI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenArtAPI</span></a> Zig WebAssembly bindings[1] (updated a few weeks ago), which add another layer of flexibility &amp; boilerplate reduction for generative/procedural/algorithmic art projects...</p><p>I will be attempting yet another few takes creating a video overview &amp; mini-workshop/tutorial about <a href="https://thi.ng/genart-api" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/genart-api</span><span class="invisible"></span></a>, hopefully also touching on these aspects...</p><p>[1] <a href="https://github.com/thi-ng/genart-api/tree/main/packages/wasm" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/thi-ng/genart-api/t</span><span class="invisible">ree/main/packages/wasm</span></a></p><p><a href="https://mastodon.thi.ng/tags/ThingUmbrella" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ThingUmbrella</span></a> <a href="https://mastodon.thi.ng/tags/Zig" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Zig</span></a> <a href="https://mastodon.thi.ng/tags/Ziglang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ziglang</span></a> <a href="https://mastodon.thi.ng/tags/WebAssembly" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WebAssembly</span></a> <a href="https://mastodon.thi.ng/tags/WASM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WASM</span></a> <a href="https://mastodon.thi.ng/tags/GenArtAPI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenArtAPI</span></a> <a href="https://mastodon.thi.ng/tags/Art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Art</span></a> <a href="https://mastodon.thi.ng/tags/GenerativeArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeArt</span></a> <a href="https://mastodon.thi.ng/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a></p>
Karsten Schmidt<p>Why use hyperlinking if you can create videos recording screens recording screens, just to be able to document other people documenting your own work. The modern internet is just sooo amazing!</p><p><a href="https://mastodon.thi.ng/tags/Actiniaria" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Actiniaria</span></a> <a href="https://mastodon.thi.ng/tags/GenerativeArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeArt</span></a> <a href="https://mastodon.thi.ng/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://mastodon.thi.ng/tags/Simulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Simulation</span></a> <a href="https://mastodon.thi.ng/tags/Art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Art</span></a> <a href="https://mastodon.thi.ng/tags/Video" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Video</span></a> <a href="https://mastodon.thi.ng/tags/Layer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Layer</span></a></p>
Dani Laura (they/she/he)<p>1/2<br>I have devised a procedure for creating a novel kind of iterative fractals, based on sectors of circumference (they cannot be produced by segments). For each sector, defined by a point, a radius, and two angles (see second picture), a substitution is defined producing a sequence of sectors. In that image, a substitution is shown which produces three new sectors, based on the parameter 𝛽, the middle portion of the original sector which is replaced with a new sector with smaller radius spanning half a turn. The lateral sectors are reduced in spread but not in radius. The first picture shows a subfractal produced when 𝛽 = 1/3, starting with a sector which spreads a full turn. The third picture shows an artistic rendering of the same fractal, where just the initial sector (a circle) and the newly added semicircles are drawn.<br>Next post will show further versions.</p><p><a href="https://mathstodon.xyz/tags/Mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathart</span></a> <a href="https://mathstodon.xyz/tags/Fractal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fractal</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/NotAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NotAI</span></a></p>
Aydan<p>I made this webpage thingie a bit ago that talks about how to make music/sounds with code and turn it into a wav file. <a href="https://machineflower.neocities.org/garden/makingsounds" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">machineflower.neocities.org/ga</span><span class="invisible">rden/makingsounds</span></a><br>It's a work in progress, I still need to add something about sampling and demonstrate more concepts and maybe actually a real song or something. Anyway :ablobwobble: <br><a href="https://aus.social/tags/lua" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lua</span></a> <a href="https://aus.social/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithmicart</span></a></p>