med-mastodon.com is one of the many independent Mastodon servers you can use to participate in the fediverse.
Medical community on Mastodon

Administered by:

Server stats:

412
active users

#motility

0 posts0 participants0 posts today
CellBioNews<p>Understanding how <a href="https://scientificnetwork.de/tags/cells" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cells</span></a> avoid obstacles while <a href="https://scientificnetwork.de/tags/navigating" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>navigating</span></a> complex environments.</p><p><a href="https://scientificnetwork.de/tags/motility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motility</span></a> <a href="https://scientificnetwork.de/tags/cytoskeleton" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cytoskeleton</span></a> <a href="https://scientificnetwork.de/tags/Snx33" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Snx33</span></a> <a href="https://scientificnetwork.de/tags/sensing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sensing</span></a> <a href="https://scientificnetwork.de/tags/membranes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>membranes</span></a></p><p><a href="https://phys.org/news/2023-09-cells-obstacles-complex-environments.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2023-09-cells-ob</span><span class="invisible">stacles-complex-environments.html</span></a></p>
Sterling Ericsson<p>The project in synthetic biology of developing cells from scratch with the most minimal systems possible continues, now with the ability to make movement happen.</p><p>Max Planck Institute scientists have taken artificial liposome vesicles made in previous experiments and combined them with Min proteins from E. coli, surprisingly creating a mechanical force gradient and moving the vesicles.</p><p><a href="https://mstdn.science/tags/Motility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Motility</span></a> <a href="https://mstdn.science/tags/SyntheticBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SyntheticBiology</span></a> <a href="https://mstdn.science/tags/Biology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Biology</span></a> <a href="https://mstdn.science/tags/Biotechmistry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Biotechmistry</span></a> <a href="https://mstdn.science/tags/Proteins" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Proteins</span></a> <a href="https://mstdn.science/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://mstdn.science/tags/Scicomm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Scicomm</span></a></p><p><a href="https://www.nature.com/articles/s41567-023-02058-8" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41567-023</span><span class="invisible">-02058-8</span></a></p>
katch wreck<p><a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.114002" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.aps.org/prl/abstract/</span><span class="invisible">10.1103/PhysRevLett.130.114002</span></a></p><p>"Only when the viscous forces are sufficiently strong to plastically deform the material to a finite distance away from the swimmer will net <a href="https://mastodon.social/tags/locomotion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>locomotion</span></a> occur. Once locomotion is underway in the third stage, the yield stress retards swimming at small pitch angles."</p><p><a href="https://mastodon.social/tags/helical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>helical</span></a> <a href="https://mastodon.social/tags/swimming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>swimming</span></a> <a href="https://mastodon.social/tags/cellular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cellular</span></a> <a href="https://mastodon.social/tags/motility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motility</span></a></p>
Jocelyn Etienne<p>aka "Surfing one's own wave"</p><p>In this preprint, Pierre and I show that a <a href="https://scicomm.xyz/tags/cell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cell</span></a> which is not polarised at all but is only <a href="https://scicomm.xyz/tags/treadmilling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>treadmilling</span></a> in a symmetric way can spontaneously start to migrate if it is spread on an sufficiently soft substrate.</p><p>This is something like <a href="https://scicomm.xyz/tags/surfing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>surfing</span></a>, as the cell is carried away by an <a href="https://scicomm.xyz/tags/elastic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>elastic</span></a> <a href="https://scicomm.xyz/tags/wave" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>wave</span></a>... which it has itself created with its treadmilling!</p><p><a href="https://scicomm.xyz/tags/cellMigration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cellMigration</span></a> <a href="https://scicomm.xyz/tags/motility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motility</span></a> <a href="https://scicomm.xyz/tags/mechanobiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mechanobiology</span></a> <a href="https://scicomm.xyz/tags/migration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>migration</span></a></p>
Sterling Ericsson<p>While we know quite a lot on how evolution developed through the history of life, some parts continue to be a source of study. </p><p>How early cells changed into swimming motile forms is one of those areas. </p><p>Osaka City University scientists have taken Spiroplasma motility genes and inserted them into the synthetic minimal genome bacteria syn3, causing it to change from a sphere to a spiral helical swimming shape.</p><p><a href="https://mstdn.science/tags/Biotech" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Biotech</span></a> <a href="https://mstdn.science/tags/Biotechnology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Biotechnology</span></a> <a href="https://mstdn.science/tags/Motility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Motility</span></a> <a href="https://mstdn.science/tags/sciencemastodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sciencemastodon</span></a> <a href="https://mstdn.science/tags/scicomm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scicomm</span></a> </p><p><a href="https://www.science.org/doi/10.1126/sciadv.abo7490" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">science.org/doi/10.1126/sciadv</span><span class="invisible">.abo7490</span></a></p>